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ABSTRACT
The ultrastrong magnetic field of magnetars modifies the neutrino cross-section due to the
parity violation of the weak interaction and can induce asymmetric propagation of neutrinos.
Such an anisotropic neutrino radiation transfers not only the linear momentum of a neutron
star but also the angular momentum, if a strong toroidal field is embedded inside the stellar
interior. As such, the hidden toroidal field implied by recent observations potentially affects the
rotational spin evolution of new-born magnetars. We analytically solve the transport equation
for neutrinos and evaluate the degree of anisotropy that causes the magnetar to spin-up or
spin-down during the early neutrino cooling phase. Supposing that after the neutrino cooling
phase the dominant process causing the magnetar spin-down is the canonical magnetic dipole
radiation, we compare the solution with the observed present rotational periods of anomalous
X-ray pulsars 1E 1841−045 and 1E 2259+586, whose poloidal (dipole) fields are ∼1015

and 1014 G, respectively. Combining with the supernova remnant age associated with these
magnetars, the present evaluation implies a rough constraint of global (average) toroidal field
strength at Bφ � 1015 G.

Key words: magnetic fields – neutrinos – radiative transfer – stars: magnetars – pulsars:
general.

1 IN T RO D U C T I O N

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs)
are two examples of the astronomical objects collectively known as
magnetars. These objects emit a large amount of energy in soft
gamma rays and X-rays, and their energy source cannot be ex-
plained in terms of the canonical rotation energy of neutron stars
(NSs). Magnetic fields inside and outside magnetars are conjec-
tured to be the main source of energy, with very strong magnetic
fields required to explain their activity.1 Magnetars are therefore a
special class of NSs that have strong magnetic fields. Based on their
periods (P) and the time derivative of their periods (Ṗ ), this class
is thought to have magnetic fields larger than the critical strength
BQ ≈ 4.4 × 1013 G, beyond which the perturbative approach of
quantum-electro dynamics breaks down.

Recently, two magnetars with surface dipole magnetic fields
smaller than BQ were reported (Rea et al. 2010, 2012). These ob-

�
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1 Another possible source is the accretion mechanism (see e.g. Trümper
et al. 2010), but here we concentrate on the strong magnetic field hypothesis
in this paper.

jects gave us important clues as to the nature of the magnetic field
inside magnetars. Since P and Ṗ measurements can only provide
information on the dipole (poloidal) component of the field, there
is no constraint on the toroidal component. As such, the unknown
toroidal fields are often thought to provide the large energy required
to account for magnetar activity. The two low-magnetic field SGRs
are thought to be explained by hidden internal magnetic fields (e.g.
SGR 0418+5729; Tiengo et al. 2013).

It is often discussed in the literature that parity violation in weak
interactions can lead to asymmetric neutrino emission in strongly
magnetized NSs. Given that neutrinos transfer momentum, asym-
metric neutrino emission originating from poloidal fields can there-
fore impart linear momentum to an NS, which is a possible cause of
pulsar kicks (Arras & Lai 1999b; Ando 2003; Kotake, Yamada &
Sato 2005; Maruyama et al. 2012). Furthermore, asymmetric neu-
trino emission could also transfer angular momentum from new-
born NSs (Maruyama et al. 2014).

In this paper, we investigate the effect of a magnetic field on
the opacity of NSs to the neutrinos that carry away the thermal
energy. We specifically focus on the toroidal component and the spin
evolution of magnetars. Section 2 opens with the basic picture of this
paper. Section 3 is devoted to the derivation of the neutrino transfer
equation and its solution. In addition, we give simple relations
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Anisotropic neutrino effect on magnetar spin 3587

between the total angular momentum of an NS and the angular
momentum emitted by neutrinos. In Section 4, we give the constraint
on the magnetar’s internal field. We summarize our results and
discuss their implications in Section 5.

2 PH Y S I C A L S C E NA R I O

In this section, we briefly outline the basic picture studied in this
paper. As is well known, NSs are formed by the gravitational col-
lapse of massive stars, leading to core-collapse supernova explo-
sions. At first, just after their formation, NSs are hot (the tempera-
ture is typically O(1011) K), and in this phase they are referred to
as protoneutron stars (PNSs). The stars then proceed to cool down
due to neutrino emission (see e.g. Burrows & Lattimer 1986; Fis-
cher et al. 2010; Suwa 2014). The typical time-scale of the cooling,
referred to as the Kelvin–Helmholtz cooling time and denoted τ ν in
the following, is O(1) s.2 In this paper, we are focusing on this early
PNS cooling phase. Note that this is different from conventional NS
cooling, the time-scale of which is typically of O(105) yr.

During the PNS cooling phase, the strong magnetic field induces
anisotropic interactions between neutrinos and polarized nucleons
and electrons. These interactions lead to an anisotropic deformation
of the neutrino flux, which in turn imparts a linear momentum to the
PNS and produces a pulsar kick (Section 1). The emitted neutrinos
may also transfer angular momentum, causing the PNS to spin-
up/down. These linear and angular momentum transfers are caused
by the strong poloidal and toroidal components of magnetic fields,
respectively. A quantitative evaluation of the angular momentum
allows us to determine the dependency of the NS spin on the toroidal
field strength. The optical depth of neutrinos during this period is
much higher than unity, so the neutrino transfer is approximated
with the diffusion equation as derived and solved in Section 3.
Using this solution, we give an estimate for the angular momentum
transferred as a result of the anisotropic neutrino emission in the
strong toroidal magnetic field.

Anisotropic neutrino emission makes the PNS slower or faster
depending on the directions of the rotation and magnetic fields
during the PNS cooling phase. After this initial phase, the magnetar
spins-down due to the canonical dipole radiation in the typical
time-scale of the current pulsar age, τ 0 (τ ν < t < τ 0). Let us here
consider the constraint on the toroidal magnetic field by utilizing
available present observations of magnetar spin periods. Observed
rotational periods of magnetars are slow and localized to a narrow
range, from ∼2 to ∼11 s (see Table A1). This means that the total
angular momentum transferred by the neutrinos in the PNS phase
is smaller than the initial NS angular momentum at that time. If this
were not the case, a fine tuning would be needed to produce the
slow spin concentration, because the direction of neutrino angular
momentum transfer does not depend on the spin direction (see
Fig. 1). For example, if the magnitude of the neutrino momentum
transfer is larger than the initial angular momentum, even NS spin-
up is possible via momentum transfer in the opposite direction
(see case d in Fig. 1). As such, the assumption that the transferred
angular momentum is smaller than that of the NS at t = τ ν seems
reasonable. Using the associated supernova remnant (SNR) age as
the current age of magnetars (τ 0), we can evaluate the spin period
at t = τ ν by turning back the spin using the dipole radiation model
(see Appendix A). The amount of angular momentum that can be

2 This is determined by Eth/Lν , where Eth is the thermal energy stored in
the PNS and Lν is the neutrino luminosity.

Figure 1. Schematic view of the time evolution of angular velocity, �. For
t < τν the neutrino emission changes the NS spin and for τ ν < t < τ 0

the NS rotation is decelerated by the usual dipole radiation. Depending on
the direction of magnetic fields, the NS spin evolution can be classified
as following. In case (a), since the toroidal filed is absent, for t < τν the
rotation velocity is not altered by neutrino emission; in case (b), the neutrinos
decelerate the NS spin; in case (c), the neutrinos accelerate the NS spin; in
case (d), the neutrinos first decelerate the NS spin and eventually the NS
rotation is stopped. Since the neutrinos transfer the angular momentum even
after the NS rotation stops, then the NS starts counterrotating (dotted line).
The spin deceleration by dipole radiation does not depend on the rotation
direction, so that the spin evolution for τ ν < t is similar independent on the
evolution for t < τν . It is clear that the rotation period of NSs distribute
broadly if the neutrinos significantly affect the spin evolution. Therefore, if
the neutrino effect dominates the spin evolution of NSs for t < τν , in order
to concentrate the current spin period of NSs in a narrow range, neutrino
effect upon the NS spin should be small enough.

transferred by the neutrinos can be constrained using the angular
momentum at t = τ ν . By using this constraint, we will then put an
upper limit on the internal toroidal magnetic field (see equations 29
and 30).

3 ANI SOTROPI C NEUTRI NO FLUX AND
M O M E N T U M T R A N S F E R

3.1 Neutrino transfer equation

Following Arras & Lai (1999b, a), we solve the transfer equation
for neutrinos. The Boltzmann equation for neutrinos is given by

1

c

∂fν( pν)

∂t
+ � · ∇fν( pν) = S, (1)

where c is the speed of light, fν( pν) is the distribution function
for neutrinos with momentum pν , t is time, � is the propagation
direction of neutrinos, and S is the source term, in which scattering
and absorption are included.

Since we are considering the neutrino transfer inside a PNS,
where the neutrinos propagate diffusely, we employ the following
diffusion approximation for the neutrino distribution function:

fν( pν) = f (0)
ν (εν) + g(εν) + 3� · h(εν), (2)

where f (0)
ν is the Fermi–Dirac distribution function for neutrinos,

εν is the neutrino energy, g(εν) is the deviation from thermal equi-
librium and h(εν) is the dipole component that is connected to the
neutrino flux.
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3588 Y. Suwa and T. Enoto

By averaging equation (1) over the whole solid angle and omitting
the time derivative term, we get the following moment equation for
steady state (Arras & Lai 1999b):

∇ [
f (0)

ν + g
] + εabsκ

abs
0 gB̂ = −3κ tot

0 h, (3)

where εabs is a coefficient related to absorption and originates from
the existence of strong magnetic fields (if there are no magnetic
fields εabs is zero). κabs

0 is the inverse of the mean free path for
neutrino emission and absorption (p + e− � n + νe) and κ tot

0 is
the inverse of the mean free path for all interactions, including
isoenergetic scattering by nucleons without magnetic fields. Lastly,
B̂ ≡ B/|B|.

Similarly, we obtain the first-order moment equation by integrat-
ing equation (1) multiplied by μ = � · r/|r| as

∇ · h = −κabs
0 g − εabsκ

abs
0 h · B̂. (4)

Note that to obtain equations (3) and (4), we omitted source terms
relating to the scattering originating from the existence of magnetic
fields (denoted εsc in Arras & Lai 1999a,b). This is because this
contribution is much smaller than from the terms proportional to
εabs.3

Combining equations (3) and (4), we get the following diffusion
equation:

1

3r2

∂

∂r

[
r2

κ tot
0

∂(f0 + g)

∂r

]
= κabs

0 g. (5)

Note that we omitted the higher order term proportional to ε2
abs.

Using the specified opacities for κabs
0 and κ tot

0 , we can solve this
diffusion equation.

Following Arras & Lai (1999a), the opacities are estimated as

κabs
0 (εν) = (GF �c)2

π
(εν + Q)2nn

(
c2
V + 3c2

A

)
[1 − fe(εν + Q)]

= 3.66 × 10−9 cm−1

(
εν + Q

2.29 MeV

)2 (
ρ

1011 g cm−3

)

× [1 − fe(εν + Q)] , (6)

κ sc
0 (εν) = 2

3π
(GF �c)2ε2

ν

(
c2
V + 5c2

A

)
n

= 3.38 × 10−10 cm−1
( εν

1 MeV

)2
(

ρ

1011 g cm−3

)
, (7)

κ tot
0 (εν) = κabs

0 (εν) + κ sc
0 (εν). (8)

Here, GF = 1.166 × 10−5 GeV−2 is Fermi’s constant,
� = 1.054 × 10−27 cm2 g s−1 is the reduced Planck constant,
Q = 1.29 MeV is the difference in mass between a neutron and
proton, nn is the number density of neutrons, cV and cA are weak
interaction constants,4 fe is the distribution function for electrons
and n is the number density of nucleons. For deriving typical values

3 In Arras & Lai (1999a), they found that εsc ∼ 10−2εabs(e)(kT/1 MeV)−1

(εν/1 MeV)2 (see equations 7.1 and 7.2 in their paper), where εabs(e) is the
asymmetry coefficient for neutrino absorption by electrons, k is Boltzmann’s
constant and T is the matter temperature. Since we are interested in the region
where kT ∼ εν ∼ O(1) MeV, omitting εsc is a reasonable approximation.
4 For νn → νn, cV = −1/2 and cA = −1.23/2. For νp → νp,
cV = 1/2 − 2 sin2 θw = 0.035 and cA = 1.23/2, where θw is the Weinberg
angle.

we used nn = np = n/2, where np is the number density of pro-
tons. The composition is assumed to be completely dissociated to
free protons and neutrons. We have neglected stimulated absorption
effects for simplicity.

The absorption coefficient, as given by Arras & Lai (1999a), is

εabs = 1

2

(�c)2eB

(εν + Q)2

c2
V − c2

A

c2
V + 3c2

A

(9)

= −0.0575

(
B

1015 G

) (
εν + Q

2.29 MeV

)−2

, (10)

where cV = 1, and cA = 1.26 for absorption.
The density profile employed in this study, which mimics the

structure of the PNS, is

ρ(r) = ρν

(
r

Rν

)−3

, (11)

where ρν is the density of the PNS surface and Rν is the radius
of the PNS. Here, we take ρν = 1011 g cm−3 and Rν = 100 km.5

Although the density diverges at the centre, it does not matter in
this study because neutrinos are tightly coupled with matter and
fν = f (0)

ν there.
By assuming that the matter temperature is constant and neutrinos

are not degenerated (i.e. taking the chemical potential of neutrinos
to be vanishing),6 we obtain the following steady state equation for
G ≡ g/f (0)

ν :

G′′ + 5

r
G′ − α

(
Rν

r

)6

G = 0, (12)

where a prime denotes the derivative with respect to r and

α = 4.01 × 10−17 cm−2

(
εν + Q

2.29 MeV

)4

(1 − fe)2

+ 3.71 × 10−18 cm−2

(
εν + Q

2.29 MeV

)2 ( εν

1 MeV

)2

× (1 − fe) . (13)

The solution to equation (12) is given by

G = C1
I1

(√
αR3

ν/2r2
)

r2
+ C2

K1

(√
αR3

ν/2r2
)

r2
, (14)

where I and K denote modified Bessel functions of the first and
second kind, respectively, and C1 and C2 are constants. At the
centre, neutrinos are tightly coupled with matter so that fν = f (0)

ν

and g = 0, meaning that C1 = 0. From equation (3), the flux is given
as

h = − 1

3κ tot
0

(
G′f (0)

ν r̂ + εabsκ
abs
0 Gf (0)

ν B̂
)
, (15)

where r̂ denotes the unit vector in the radial direction. Since the
specific neutrino flux is given by Fν = (εν/2π�c)3ch, r− and
φ−components are given as

F r
ν = − c

3κ tot
0

( εν

2π�c

)3
(

G′ + εabsκ
abs
0 G

Br

B

)
f (0)

ν , (16)

5 For simplicity, we neglect the time evolution of Rν , which evolves
from ∼100 to ∼10 km within the PNS cooling time.
6 The temperature above the neutrinosphere, which we are considering in this
paper, can be approximated as almost constant and the chemical potential
of electrons is negligible (see Janka 2001).
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Anisotropic neutrino effect on magnetar spin 3589

Fφ
ν = − c

3κ tot
0

( εν

2π�c

)3
εabsκ

abs
0 G

Bφ

B
f (0)

ν . (17)

Here, Br and Bφ correspond to the r− and φ−components of the
magnetic field, respectively. F r

ν should be positive at Rν so that
C2 < 0.

By integrating over energy, using the matter temperature kT =
4 MeV and vanishing chemical potentials for f (0)

ν and fe, the ra-
tio between fluxes in the radial and orthogonal directions at the
neutrinosphere surface is given by∫

dενF
φ
ν∫

dενF r
ν

∣∣∣∣
r=Rν

≈ −0.013

(
Bφ

1015 G

) (
Rν

100 km

)1/2

. (18)

The second term in equation (16) is neglected in this estimation.
The total neutrino luminosity is given by

Lν =
∫

dενd�Fr
ν R2

ν (19)

and the rate of angular momentum transfer by neutrinos is given
by

Jν = 1

c

∫
dενd�Fφ

ν R3
ν sin θ. (20)

The factor Rνsin θ comes from the distance from the symmetry axis.
By combining equations (18), (19) and (20), and assuming that F r

ν

is independent of the angle, we obtain

Jν = −0.013

( 〈
Bφ

〉
1015 G

) (
Rν

100 km

)1/2
RνLν

c
(21)

= −4.3 × 1047 g cm2 s−2

×
( 〈

Bφ
〉

1015 G

) (
Rν

100 km

)3/2 (
Lν

1053 erg s−1

)
, (22)

where
〈
Bφ

〉 ≡ ∫
d�Bφ sin θ/4π, which is the angle-averaged

strength.

3.2 Angular momentum transfer by neutrinos

In this subsection, we evaluate the angular momentum transferred
by the anisotropic neutrino radiation that interacts with the toroidal
magnetic field. This process occurs during the PNS cooling phase
when the neutrino diffusion approximation is valid in the stellar
interior (Section 3.1). By comparing it with the total angular mo-
mentum of a rotating NS, we are able to determine an expression
for the critical magnetic field strength at which the NS rotation
period is drastically affected by the anisotropic neutrino radiation.
In order to compare with present observations, here we employ the
NS angular momentum at a stellar radius of 10 km after the PNS
cooling phase. This assumption is valid if the angular momentum is
conserved when the PNS (i.e. hot NS) contracts to a cold NS, where
the radius shrinks from ∼100 to ∼10 km.

The angular momentum of an NS is written as

Mφ
NS = I�

= 7.0 × 1045 g cm2 s−1

(
P

1s

)−1 (
M

1.4 M


) (
RNS

10 km

)2

,

(23)

where I = 2
5 MR2

NS is the moment of inertia, � is the angular ve-
locity, P is the rotation period (P = 2π/�), M is the NS mass and
RNS is the NS radius.

The angular momentum transferred by neutrino radiation is given
by

Mφ
ν = β

RνEν

c

= 6.7 × 1048 g cm2 s−1β

(
Rν

100 km

) (
Eν

2 × 1052 erg

)
, (24)

where β is the asymmetry parameter for neutrino emission and Eν is
the total energy emitted by the neutrinos responsible for the change
in spin, which is related to the luminosity as Eν = ∫

dtLν . Note that
a PNS has larger radius than an ordinary NS due to the existence of
thermal pressure (see e.g. Janka 2012; Suwa et al. 2013). Although
the total amount of energy that can be released by the neutrinos
is ∼3 × 1053 erg, the contributions from νμ (ντ ) and ν̄μ (ν̄τ ) to the
change in spin cancel each other (Arras & Lai 1999a). As such, we
only consider the energy released due to the νe emitted in electron
capture (p + e → n + νe) just after the core bounce of supernova
shock, which is ∼O(1052) erg. The total number of νe emitted due
to electron capture is estimated as

Nνe = Np = MYp

mp
= 8.3 × 1056

(
M

1.4 M


) (
Yp

0.5

)
, (25)

where Np is the total number of protons in the NS, mp is the proton
mass and Yp is the proton fraction. By taking the average energy of
emitted νe to be 3.15kT = 12.6 MeV (kT/4 MeV), the total energy
released due to νe emission in the neutralization process is given as

Eνe = 1.7 × 1052 erg(M/1.4 M
)(Yp/0.5)(kT /4 MeV).7

Comparing equations (23) and (24), one recognizes that the
slowly rotating (P ∼ 1 s) PNS’s rotation can be significantly af-
fected if β ∼ 10−3. This condition can be used to put a constraint
on the strength of internal toroidal magnetic fields. From equations
(22) and (24), β is given as

β ≈ −0.013

( 〈
Bφ

〉
1015 G

) (
Rν

100 km

)1/2

, (26)

where we have used
∫

dtLν = Eν . Using these relations, in the next
section we will constrain the internal toroidal field.

4 C O N S T R A I N T O N I N T E R NA L TO RO I DA L
FI ELDS

It is natural to expect that the angular momentum transferred by
neutrinos should be smaller than the total angular momentum of the
PNS at t = τ ν (see Section 2). As such, using equations (23) and
(24) we get the following constraint:

|β| � 1.0 × 10−3

(
P

1 s

)−1 (
M

1.4 M


) (
RNS

10 km

)2

×
(

Rν

100 km

)−1 (
Eν

2 × 1052 erg

)−1

, (27)

7 Note that, due to the difference in number density of neutrons and protons,
the distribution functions of νe and ν̄e may be different, meaning that the
contributions from these species to the change in spin may not exactly
cancel. In this case, Eν could be ∼1053 erg, which should be checked using
a more sophisticated neutrino transfer calculation.
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which can be rewritten as a constraint on the magnetic fields using
equation (26) as

∣∣〈Bφ
〉∣∣ � 8.1 × 1013 G

(
P

1 s

)−1 (
M

1.4 M


) (
RNS

10 km

)2

×
(

Rν

100 km

)−3/2 (
Eν

2 × 1052 erg

)−1

. (28)

By exploiting the fact that the magnetic flux is conserved during the
PNS cooling phase, i.e. 〈Bφ

NS〉R2
NS = 〈

Bφ
〉
R2

ν , we can evaluate the
field strength inside a cold NS whose radius is RNS as

∣∣∣〈B
φ
NS

〉∣∣∣ � 8.1 × 1015 G

(
P

1s

)−1 (
M

1.4 M


)

×
(

Rν

100 km

)1/2 (
Eν

2 × 1052 erg

)−1

. (29)

We therefore see that the constraint on the magnetic field strength
depends on the rotation period P at t = τ ν . The typical spin period
of magnetars at t = τ ν is unclear due to the lack of knowledge on
magnetar formation. However, if we take P = 10 ms at t = τ ν , we
obtain |〈Bφ

NS〉| � 1018 G.
If we assume that magnetic dipole radiation is the dominant

process affecting magnetar spin evolution for t > τν ,8 the spin
period of 1E 1841−045 at t = τ ν can be estimated as ≈8–11 s (see
Appendix A). Therefore, using equation (29), we can obtain the
following constraint on the field strength:

∣∣∣〈B
φ
NS

〉∣∣∣ � 1015 G

(
Rν

100 km

)1/2

, (30)

where we have employed canonical values for M and Eν . A similar
value is obtained for the case of 1E 2259+586.9 Thus, the toroidal
magnetic fields of these magnetars can be comparable to the dipole
component at least at the moment of birth. Note that this constraint
only applies to the global toroidal field, i.e. the angle-averaged
value near the NS surface, since the angular momenta transferred
by turbulent components on small scales cancel each other out.

5 SU M M A RY A N D D I S C U S S I O N

In this paper, we studied the spin evolution of magnetars resulting
from the anisotropic neutrino emission induced by strong magnetic
fields. We solved the diffusion equation for neutrinos and estimated
the degree of anisotropy. By considering the toroidal component of
the magnetic fields, we were able to constrain the unseen internal
fields using the current rotation period of magnetars. Supposing
that the associated SNR age is the real magnetar age, we found the
constraint |〈Bφ

NS〉| � 1015 G for 1E1841−045 and 1E 2259+586,
whose dipole fields are thought to be ∼1015 and 1014 G, respectively.

In addition to the spin evolution, we can also estimate the pulsar
kick velocity of magnetars using equation (18). When we consider
the split monopole poloidal field at the PNS surface, the degree of

8 Here, we assume that the spin evolution induced by anisotropic neutrino
radiation ceases at t = τ ν (∼O(1) s). After that only the long-term (∼1 kyr)
spin evolution due to dipole radiation is considered. This is because at t = τν

the average energy of neutrinos decreases and the NS becomes transparent
to them, so that the mechanism investigated in this study is no longer active.
9 Interestingly, this value is similar to the recent observational suggestion by
Makishima et al. (2014), which is based on the pulse modulation analysis
implying the precession. Note that their employed magnetar is different one
from ours so that this coincidence might be just a product of chance.

asymmetry γ is O(10−2)(Bp/1015 G). The kick velocity can thus
be estimated as

vkick = γ
Eν

Mc
(31)

≈ 24.0 km s−1
( γ

10−2

) (
Eν

2 × 1052 erg

) (
M

1.4 M


)−1

.

(32)

We therefore see that the magnetar kick resulting from this mecha-
nism is expected to be very small.

In this paper, we focused on magnetars (SGRs and AXPs). How-
ever, there are other classes of stars that also have strong dipole
fields (see Dall’Osso, Granot & Piran 2012, for a list). These ob-
jects exhibit a similar spin period to magnetars (3 s � P � 11 s), but
their magnetic fields are typically weaker. Even though they do not
have associated SNR, we can apply the same analysis as discussed
in this paper taking Pi ∼ O(1) s. Thus, the constraint obtained in
this study is applicable for these objects as well as magnetars.

To finish, we comment on the assumptions made in this study.
First, we employed the diffusion approximation for the neutrino
radiative transfer equation. This assumption is essentially valid for
the region of the magnetar considered in this work, but near the
surface, where the mean free path of neutrinos is comparable to
the scale size, this approximation starts to break down. However,
since we are considering the region inside the PNS, the effect of
the break down of this assumption is not significant. Secondly,
for simplicity we have assumed that the PNS radius is constant
during the cooling phase. However, this assumption does not change
our discussion drastically because the constraints on the internal
toroidal magnetic field given by equations (29) and (30) imply very
weak dependence on the PNS radius. In addition, since a smaller
PNS radius gives a tighter upper limit for the toroidal field, our
assumption of constant radius will tend to give more conservative
upper limits. Thirdly, since the real age of a magnetar is unknown,
we assumed it to be the same as that of the SNR. Because the
SNR age contains systemic errors, this approximation might affect
the derived constraint. However, we expect that the corrections to
the age do not change it by orders of magnitude, meaning that our
discussion in the previous section should not change very much even
if we include this systematic error. Finally, we have assumed that
after neutrino emission the sole mechanism behind the magnetar
spin-down is dipole radiation. There are several other mechanisms
that can decelerate an NS’s spin (see e.g. Thompson, Chang &
Quataert 2004), which will tend to lead to looser constraints on the
internal fields. This is because these mechanisms usually act later
than the neutrinos so that a smaller Pi is possible. More detailed
studies that include the effects of other deceleration mechanisms
are necessary. A fundamental limit can be obtained using the fastest
rotation of an NS (i.e. the rotational breakup speed), which gives
〈Bφ

NS〉 � 1019 G.

AC K N OW L E D G E M E N T S

We thank the referee, U. Geppert, for providing constructive com-
ments and help in improving the contents of this paper. YS would
like to thank P. Cerda-Duran and N. Yasutake for informative discus-
sions, K. Hotokezaka, T. Muranushi, and M. Suwa for comments,
and J. White for proofreading. We also thank the Yukawa Institute
for Theoretical Physics at Kyoto University, where part of this work
was done during the workshop YITP-T-13-04 entitled ‘Long-term

MNRAS 443, 3586–3593 (2014)

 at N
A

SA
 G

oddard Space Flight C
tr on Septem

ber 25, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Anisotropic neutrino effect on magnetar spin 3591

Workshop on Supernovae and Gamma-Ray Bursts 2013’. YS is
supported in part by Grant-in-Aid for Scientific Research on Inno-
vative Areas (No. 25103511) and by HPCI Strategic Program of
Japanese MEXT. TE is supported by JSPS KAKENHI, Grant-in-
Aid for JSPS Fellows, 24-3320.

R E F E R E N C E S

Aharonian F. et al., 2008, A&A, 486, 829
Ando S., 2003, Phys. Rev. D, 68, 063002
Arras P., Lai D., 1999a, Phys. Rev. D, 60, 043001
Arras P., Lai D., 1999b, ApJ, 519, 745
Burrows A., Lattimer J. M., 1986, ApJ, 307, 178
Colpi M., Geppert U., Page D., 2000, ApJ, 529, L29
Dall’Osso S., Granot J., Piran T., 2012, MNRAS, 422, 2878
Enoto T., Nakazawa K., Makishima K., Rea N., Hurley K., Shibata S., 2010,

ApJ, 722, L162
Fischer T., Whitehouse S. C., Mezzacappa A., Thielemann F.-K.,

Liebendörfer M., 2010, A&A, 517, A80
Janka H.-T., 2001, A&A, 368, 527
Janka H.-T., 2012, Annu. Rev. Nucl. Part. Sci., 62, 407
Kotake K., Yamada S., Sato K., 2005, ApJ, 618, 474
Makishima K., Enoto T., Hiraga J. S., Nakano T., Nakazawa K., Sakurai S.,

Sasano M., Murakami H., 2014, Phys. Rev. Lett., 112, 171102
Maruyama T., Yasutake N., Cheoun M.-K., Hidaka J., Kajino T., Mathews

G. J., Ryu C.-Y., 2012, Phys. Rev. D, 86, 123003
Maruyama T. et al., 2014, Phys. Rev. C, 89, 035801
Nakano T., Makishima K., Nakazawa K., Uchiyama H., Enoto T., 2012,

in Petre R., Mitsuda K., Angelini L., eds, AIP Conf. Ser. Vol. 1427,
SUZAKU 2011: Exploring the X-ray Universe: Suzaku and Beyond.
Am. Inst. Phys., New York, p. 126

Olausen S. A., Kaspi V. M., 2014, ApJS, 212, 6
Park S., Hughes J. P., Slane P. O., Burrows D. N., Lee J.-J., Mori K., 2012,

ApJ, 748, 117
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A P P E N D I X A : SP I N E VO L U T I O N O F
M AG N E TA R S

A1 Case without magnetic field decay

Since the real age of a magnetar, τ 0, is unknown, the characteristic
spin-down time, τc ≡ P/2Ṗ , is conventionally used as an approxi-
mation. We also know that some magnetars can be associated with
SNRs, for which alternative, better age estimations are possible via
X-ray plasma diagnostics. Here, we assume that the SNR age is a
better estimator of τ 0, and extrapolate the current rotation period
to the initial period at τ ν using the dipole radiation model. In the
following discussion, we give expressions for the initial rotation

Figure A1. The time evolution of rotation period for NSs with different
dipole magnetic fields (grey dashed lines). The imposed magnetic field
strengths are shown near the corresponding lines. Red and blue points in-
dicate the observational data for which characteristic ages (τc = P/2Ṗ )
and SNR ages are used, respectively. For Bp = 1015 G, we plot two lines
with different initial periods. The top and bottom lines correspond to initial
periods of 1 s and 1 ms, respectively.

period Pi at τ ν and its evolution. In this subsection, we neglect the
magnetic field decay, which will be discussed in the next subsection.

When dipole radiation is the leading cause of spin-down, the
rotation period as a function of time, t, can be written as (Shapiro
& Teukolsky 1983)

P = Pi

(
1 + 2P 2

P 2
i

t

T

)1/2

, (A1)

where the initial period, Pi, at t = τ ν is given at the time when
dipole radiation becomes the dominant process for spin-down and

T = P

Ṗ
= 3Ic3P 2

2π2B2
p R6 sin2 α

(A2)

= 145 yr

(
Bp

1015 G

)−2 (
R

10 km

)−4 (
M

1.4 M


) (
P

1s

)2

, (A3)

where Bp is the surface dipole field at the pole. Here, we employ
sin 2α = 1 for simplicity. Using this relation we find

Bp =
(

3Ic3

2π2R6
P Ṗ

)1/2

= 6.75 × 1019 G

(
M

1.4 M


)(
R

10 km

)−4(
P

1s

)1/2(
Ṗ

1s/s

)1/2

.

(A4)

Although this result looks different by a factor of 2 to the frequently
used B = 3.2 × 1019 G

√
P Ṗ , this difference just comes from a

difference in notation.10 By substituting equation (A2) into (A1),
we get the following simple form as

P 2 = P 2
i + 4π2B2

p R6 sin2 α

3Ic3
t . (A5)

In Fig. A1, we show the evolution of the spin period of NSs
with various strengths of the constant dipole field. The red crosses
correspond to observed magnetars for which the characteristic age is

10 In this paper, we use the value of the magnetic field at the pole as opposed
to the value in the equatorial plane that is often used.
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Table A1. Observational properties of SGRs and AXPs.

SGR/AXP namea P (s) Ṗ (10−11 s s−1) Bp (1014 G)b τ c (kyr)c SNR age (kyr)

SGR 0418+5729 9.078 388 27(4) <0.0006 <0.16 2.4 × 104 < –
SGR 0501+4516 5.762 096 53(3) 0.582(3) 3.9 16 –
SGR 0526−66 8.0544(2) 3.8(1) 12 3.4 4.8d

SGR 1627−41 2.594 578(6) 1.9(4) 4.7 2.2 –
SGR 1806−20 7.6022(7) 75(4) 51 0.16 –
Swift J1822.3−1606 8.437 719 77(4) 0.0254(22) 0.99 530 –
SGR 1833−0832 7.565 4084(4) 0.35(3) 3.5 34 –
Swift J1834.9−0846 2.482 3018(1) 0.796(12) 3.0 4.9 60–200e

SGR 1900+14 5.199 87(7) 9.2(4) 15 0.90 –

CXOU J010043.1−721134 8.020 392(9) 1.88(8) 8.3 6.8 –
4U 0142+61 8.688 328 77(2) 0.203 32(7) 2.8 68 –
1E 1048.1−5937 6.457 875(3) ∼2.25 8.1 4.5 –
1E 1547.0−5408 2.072 1255(1) ∼4.7 6.7 0.70 N/A
PSR J1622−4950 4.3261(1) 1.7(1) 5.8 4.0 –
CXO J164710.2−455216 10.610 6563(1) ∼0.073 1.9 230 –
1RXS J170849.0−400910 11.003 027(1) 1.91(4) 9.8 9.1 –
CXOU J171405.7−381031 3.825 35(5) 6.40(14) 11 0.95 4.9f

XTE J1810−197 5.540 3537(2) 0.777(3) 4.4 11 –
1E 1841−045 11.782 8977(10) 3.93(1) 15 4.8 0.5–2.6g

1E 2259+586 6.978 948 4460(39) 0.048 430(8) 1.2 230 14h

Note: aData taken from McGill SGR/AXP Online Catalog (Olausen & Kaspi 2014, see also Viganò et al. 2013). bThe
estimation is based on equation (A4). cCharacteristic ages estimated as P/2Ṗ . dPark et al. (2012). eTian et al. (2007).
fAharonian et al. (2008). gTian & Leahy (2008). hSasaki et al. (2013).

used (τc ≡ P/2Ṗ ), whilst the blue points correspond to magnetars
that can be associated with SNRs, so that the SNR age is used. For
Bp = 1015 G, we plot the evolution for two different initial periods
(Pi=1 s for the top line and 1 ms for the bottom line). One finds that
the evolutions coincide after �1000 yr, from which we conclude
that Pi does not affect the late time evolution.

As can be seen in Table A1, there are two magnetars for which
the SNR age is younger than the characteristic age. For example, 1E
2259+586 and associated SNR CTB 109 exhibit a large discrepancy
between the two ages.11 Here, we treat the SNR age as the true age
and use this to estimate the spin periods of the magnetars at birth.
In Fig. A2, we show the time evolution of the spin period for values
of P and Ṗ equal to those of 1E 1841−045. We find that Pi should
be ≈8–11 s in order to explain the current observation with the
age of ∼1 kyr. The same analysis also gives the initial period of
1E 2259+586 as Pi ≈ 7 s, which is almost the same as the current
period. Note that these values would be smaller if decay of the
poloidal magnetic field were included, which will be discussed in
the next subsection.

A2 Case with magnetic field decay

In this subsection, we study spin evolution including phenomeno-
logically the effect of magnetic field decay. It is important to con-
sider the effect of the decaying magnetic field because there is no
isolated NS with P � 12 s, meaning that the dipole radiation can be
assumed to become small enough so as to not affect the spin period
for slowly rotating NSs. There are several studies that investigate
the long-term evolution of magnetic fields including their decay

11 In Nakano et al. (2012), an attempt has been made to reconcile this dis-
crepancy by including magnetic field decay. Also note that, despite the
discrepancy, it has been suggested that in the context of broad-band spec-
troscopy the characteristic age may be a suitable parameter to label Magnetar
classes (Enoto et al. 2010).

Figure A2. Period evolution with time for NSs with values of P and Ṗ equal
to those of 1E 1841−045. The black contour lines correspond to trajectories
with different initial spin periods, Pi. The value of Pi can be read off from
the colour map. The thick horizontal black line represents the SNR age
including systematic errors as given in Tian & Leahy (2008), with the two
crosses marking the lower and upper limits of 0.5 and 2.6 kyr, respectively.
In order to explain observational data, Pi ≈ 8–11 s is necessary. The triangle
corresponds to the characteristic age (≈4.8 kyr), and lies on a trajectory with
infinitely small Pi.

(e.g. Colpi, Geppert & Page 2000; Dall’Osso et al. 2012; Nakano
et al. 2012; Pons, Viganò & Rea 2013).

Using the model of Colpi et al. (2000) and Dall’Osso et al. (2012),
after several algebraic steps we get the following expressions for
the time evolution of the spin period and the dipole magnetic field
strength:

P 2(t) = P 2
∞ − (

P 2
∞ − P 2

i

) (
1 + t

τd

)(αB−2)/αB

, (A6)

Bp(t) = Bi

(1 + t/τd)1/αB
, (A7)

where P∞ is the final spin period, τd is the decay time-scale of
the magnetic fields, αB is a parameter describing the magnetic field
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Figure A3. The same as Fig. A2 but for the decaying magnetic field model (see equations A6 and A7) with the initial magnetic field Bi = 1016 G. The top axis
corresponds to the strength of poloidal dipole magnetic field (see equation A7). The left-hand panel is for P∞ = 12 s and the right-hand panel for P∞ = 15 s.
The blank square marks the current observed Bp and P, and is almost coincident with the left-hand cross that marks the lower limit on the SNR age.

decay and Bi is the initial magnetic field strength. In Dall’Osso
et al. (2012), it was found that models with 1.5 � αB � 1.8 can
explain most of the observational evidence for isolated NSs with
strong magnetic fields (not only magnetars but also X-ray dim iso-
lated NSs). Although P∞ is unknown, Dall’Osso et al. (2012) and
Pons et al. (2013) suggested that P∞ ≈ 12 s, because there is no
observed NS with P � 12 s. Thus, we employ P∞ = 12 s as a
fiducial value here. In addition, Dall’Osso et al. (2012) showed
that taking 1015 G � Bi � 1016 G gives good agreement with the
distribution of observed NSs with strong magnetic fields in the
τ c–Bp plane. We thus use Bi = 1016 G in the following. In order
to explain observed features, Dall’Osso et al. (2012) suggested that
τd =1 kyr/(Bi/1015 G)αB .

In Fig. A3, we show the period evolution of magnetars as deter-
mined using the decaying magnetic field model. In this figure, the
top axis gives the strength of poloidal field (decreasing from the
initial value of 1016 G). The blank square shows the current posi-
tion of 1E1841−045 in the P–Bp plane, as estimated from P and

Ṗ . We see that the square overlaps with the left-hand cross, which
corresponds to the lower limit on the SNR age. As such, this model
can be used to consistently explain all three observed quantities P,
Bp and the SNR age. One can see that Pi � 11 s is still required
in order to explain observations using the decaying magnetic field
model with fiducial model parameters (case a). As such, the discus-
sion in the previous subsection is still valid in this case. We do note,
however, that with a fine tuning of the parameters it is possible to
explain observational data with P∞ > 12 s and Pi � 1 s (see case
b). On the other hand, 1E 2259+586 has P = 6.978 948 4460 s. We
find that Pi ∼ 5 s by the same discussion with fiducial parameters,
which is similar value as 1E 1841−045. Therefore, even with the
decaying magnetic field model, we find that Pi should be O(1) s.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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